
Asian Herpetological Research  2013, 4(1): 1–8
DOI: 10.3724/SP.J.1245.2013.00001

1. Introduction

Variation in phenotypic traits among individuals is the 
core material upon which natural selection can operate, 
and ultimately generate evolutionary change. Early 
paradigms that attributed phenotypic variation largely 
to underlying genetic variation have now been replaced 
by more complex views that allow a major role for non-
genetic causes of variations, such as developmental 
plasticity (West-Eberhard, 2003). Natural selection is 
expected to fashion norms of reaction in the same way 
as it fashions genetically canalized traits, and thus many 
of the patterns we have seen in developmental plasticity 
likely are adaptive (e.g., Aubret et al., 2004). Adaptive 
developmental plasticity allows organisms to maximize 
their fitness by altering the reaction norms of phenotypes 
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in direct response to various biotic and abiotic factors. 
Such plasticity thus may give the organism a “head start” 
on dealing with environmental changes (West-Eberhard, 
2003; Bateson et al., 2004). 

Developmental plasticity is widespread phylogeneti- 
cally, but has attracted intensive studies in reptiles 
because these ectotherms experience a wide range of 
environmental conditions during the embryonic stage as 
well as later in life (Aubret et al., 2004; Shine, 2004). That 
exposure to (often unpredictable) variation in thermal, 
hydric and nutritional conditions plausibly has favoured 
an ability to respond to environmental factors through 
adaptive plasticity. Unlike birds and mammals where 
embryos develop under relatively constant conditions, 
embryonic development in reptiles often occurs under 
fluctuating conditions found within nests (oviparous 
species) or maternal uteri (viviparous species) (Ackerman 
and Lott, 2004). Such variation in environmental 
conditions, including both abiotic and biotic factors, may 
substantially affect the rates and trajectories of embryonic 
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Abstract  Adaptive developmental plasticity can enable an organism to modify its phenotype rapidly, in response to 
local (and perhaps, unpredictable) conditions, by altering reaction norms during development. Previous studies on this 
topic have been dominated by western scientists, employing western study systems and approaches. Recently, the ex-
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development, and thus, affect hatchling phenotypes 
in ways likely to affect survival and reproduction of 
offspring (Figure 1). The ways in which natural selection 
modifies phenotypic traits through developmental 
plasticity have emerged as an exciting field of study. For 
example, natural selection may function by modifying 
maternal behavior and physiology, thus affecting the 
conditions experienced by embryos. Nesting females can 
select nest-sites that provide abiotic conditions conducive 
to the production of offspring with high survival and 
reproductive success, which in turn improves their 
own (maternal) fitness (Figure 1). Additionally, natural 
selection may fine-tune developmental responses so that 
embryos can develop into high-quality offspring, even 
though they develop under the conditions that would 
greatly reduce viability in some ancestral species (Shine, 
2004). Accordingly, we expect a complex evolutionary 
interplay between developmental plasticity in embryos 
and maternal traits that determine incubation parameters. 

As in many other fields of science, Chinese research 
on developmental plasticity in reptiles has a long history, 
but is unfamiliar to most western scientists because of 
historical incidents and language obstacles. Until recently, 
most Chinese research was introduced to western 
science through publication in international journals, and 

collaboration between Chinese and western scientists. 
For example, in the first edited volume that reviewed 
the topic of egg incubation in reptiles (Deeming and 
Ferguson, 1991), the only studies that were cited were 
those from western countries (Europe, North America, 
and Australia). In a subsequent review on the same topic, 
however, 25 studies by Chinese scientists were cited 
(Deeming, 2004). This change is of course encouraging, 
but the opportunities have barely been tapped. China 
has an extensive reptilian biodiversity including some 
160 species of lizards, 220 species of snakes, 38 species 
of turtles, and 3 species of crocodiles (Zhang et al., 
1998). These animals are geographically distributed 
from tropical to cold-temperate regions (10°–50° N), and 
from low to high elevations (-40−5300 m a.s.l.). Many 
of the Chinese taxa belong to phylogenetic lineages not 
represented, or poorly represented, in western countries. 
This diverse assemblage of species provides exciting 
opportunities to answer questions previously addressed 
only for geographically and phylogenetically limited 
subsets of taxa in western countries. Here, we summarize 
research on developmental plasticity in Chinese reptiles 
over the past two decades, followed by some suggestions 
for the direction of future studies in this field and for 
research opportunities in China.
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Figure 1  The causes, processes, and adaptive significance of developmental plasticity in embryonic reptiles.



Weiguo DU et al.    Phenotypic Plasticity in Embryonic Development of Reptiles in ChinaNo. 1 3

2. Recent Development in Developmental Plas-
ticity in Chinese Reptiles

Research on developmental plasticity in Chinese reptiles 
began in the 1980s. In the last decade, this research effort 
has increased considerably; we have been able to locate 
93 papers addressing developmental plasticity in 
Chinese reptiles that have been published in Chinese 
or international journals [with 53 papers in English and 
40 in Chinese with English abstract (Appendix I;  see it 
below)]. Most of these studies are based on one of the 
following three topics.

2.1 Developmental plasticity in embryos  Initially, 
studies on the effects of temperature and moisture on 
embryonic development and hatchling traits were based 
on experimental regimes that imposed constant conditions 
throughout incubation. That is, the treatments differed in 
mean conditions but did not incorporate thermal or hydric 
fluctuations. Such studies on about 20 species of Chinese 
reptiles (including lizards, snakes, turtles and alligators) 
showed that incubation temperature had substantial 
effects on embryonic development and hatchling 
phenotypes. Hatchlings from eggs incubated at moderate 
temperatures were generally larger, had better functional 
performance, and grew faster than those from extreme 
low and high incubation temperatures (e.g., Lin and 
Ji, 1998; Ji et al., 2003; Du et al., 2010a; Cao et al., 2012). 
Hatchling sex is dependent on incubation temperatures and 
thermal environments experienced by gravid females in 
some oviparous and viviparous lizards (Zhu et al., 2006; 
Zhang et al., 2010; Ding et al., 2012). However, moisture 
had much less effect on hatchling traits either in squamates 
or turtles (e.g., Ji and Du, 2001; Zhao et al., 2009; Zhao 
et al., 2013). Building upon these studies, Chinese 
ecologists increasingly began to design more naturalistic 
experiments, whereby developmental plasticity was 
examined under the conditions designed to mimic 
natural environments experienced by eggs. For example, 
phenotypic effects of incubation were explored by using 
different methods including in field nests, artificial 
nests and programmable incubators with fluctuating 
temperatures (e.g., He et al., 2002; Du and Feng, 2008). 
In addition to confirming the findings of western ecologists 
that thermal fluctuation in natural nests may induce 
significant phenotypic variation in hatchlings (Deeming, 
2004), these studies further revealed that the influence of 
thermal variance may differ with changing mean temperature. 

2.2 Physiological basis of developmental plasticity  
Traditional egg incubation experiments were performed 

according to a “black box” approach, simply mani-
pulating the embryo’s environment and evaluating 
effects on the hatchlings. Such experiments reveal 
little about the mechanism of developmental plasticity. 
Chinese researchers have conducted experiments on 
a range of species to investigate the mechanisms of 
phenotypic variation in response to the environment. 
Several of these studies have suggested that the 
variation in hatchling size induced by incubation 
temperature is related to the efficiency of energy 
conversion from embryos to hatchlings (e.g., Ji et al., 
2001). Similarly, incubation period is shorter in 
high-latitude populations than low-latitude popu-
lations in some wide-ranging lizards (Du  et al. , 
2010b; Sun et al., 2012). The physiological pathways to 
shorten incubation period in high-latitude populations 
may differ among species: early hatching is achieved by 
advanced embryonic development prior to oviposition 
in some species, but by faster developmental rates of 
embryos during incubation in others (Sun et al., 2012). 
Within a species, geographic variation in incubation 
period also may result from more than one mechanism to 
accelerate rates of embryonic development: for example, 
through an increase in heart mass (and thus, stroke 
volume) in one population, and through an increase in 
heart rate in another (Du et al., 2010b). 

2.3 Adaptive significance of developmental plasticity  
Western scientists have proposed several hypotheses 
about the evolutionary role of developmental plasticity in 
reptilian biology. Recently, Chinese herpetologists have 
conducted empirical tests of major predictions from those 
published hypotheses by western scientists, using local 
species as their test subjects. For example, Shine’s (1995) 
“maternal manipulation hypothesis” for the evolution 
of reptilian viviparity predicted that gravid females 
would maintain body temperatures different from those 
available in external nests, and that incubation at those 
modified conditions would enhance offspring fitness. Ji 
and his students (Ji et al., 2007; Li et al., 2009) tested 
these predictions using several Chinese lizard species 
from warm to frigid regions. Their results supported the 
principal predictions from the maternal manipulation 
hypothesis: that is, females adjust their thermoregulatory 
tactics during pregnancy, and the phenotypic traits forged 
by maternal thermoregulation are likely to enhance 
offspring fitness. 

3. Future Research Opportunities in China

The interplay between maternal control of incubation 
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conditions and reaction norms for embryogenesis 
provides a robust model system to explore the ways in 
which organisms can utilize developmental plasticity 
to respond to new environmental challenges. Reptiles 
provide excellent model systems in this respect. Much has 
been learnt, but many gaps remain. We suggest that the 
following topics are likely to attract significant research 
from Chinese ecologists in the near future.

3.1  Developmental  p las t ic i ty  in  response  to 
environmental factors other than only temperature 
and moisture   Identifying the effects of abiotic and 
biotic factors other than temperature and moisture on 
embryonic development would help us understand 
developmental plasticity. For example, the availability of 
oxygen can strongly affect the development of reptilian 
embryos, but this topic has not received much attention 
due to the logistical difficulty of measuring respiratory 
gases in nests (Ackerman and Lott, 2004). Several reptile 
species in China are distributed across a wide range of 
elevations and thus experience different levels of oxygen 
availability during the embryonic stage. Thus, these 
animals can provide ideal model systems to identify how 
reptilian embryos respond to the variation in oxygen 
supply. In addition to abiotic factors, biotic variables 
such as food availability and predation also may affect 
embryonic development by influencing maternal behavior 
(e.g., nest selection and thermoregulation) and physiology 
(e.g., energy allocation to egg yolk). Although the 
effects of these biotic factors on embryonic development 
have rarely been studied, they would be of great 
interest. Recent scientific concern about the effects of 
anthropogenic changes (e.g., climate warming and habitat 
loss) focuses attention on issues such as how reptilian 
embryos respond to such changes, and what is the role of 
developmental plasticity in such responses? 

Cultural differences between China and western 
societies may influence research directions and 
opportunities, in complex and often indirect ways. For 
example, Chinese people have traditionally treated 
almost all reptiles (from lizards to crocodiles) as valuable 
food, medicine or pets (Zhang et al., 1998). As a result, 
artificial breeding of reptiles is a booming business, 
especially in recent years by providing a mass market 
for reptile products to improve economic conditions. 
That commercial breeding has not only reduced the 
pressure of human utilization on natural resources, but 
also resulted in many species being translocated to areas 
of China far away from their natural range. For example, 
some northern species have been brought to southern 
China for raising and breeding, because of advantages 

of accelerated development achieved under warmer 
conditions. The numbers of animals produced in these 
commercial farms are massive, not only making it easy to 
obtain study animals and eggs in numbers that would be 
logistically prohibitive in most other countries, but also 
providing natural experiments to identify how reptilian 
embryos respond to climate warming. In addition, 
increasingly rapid changes in China have stimulated 
major shifts in the locations and sizes of towns and 
cities, and prompted several major attempts at habitat 
restoration over large spatial scales. Such intensive 
habitat manipulations provide opportunities to determine 
the role of developmental plasticity of reptiles in response 
to habitat changes.   

3.2 The mechanisms underlying developmental 
plasticity  Another gap in our understanding involves 
the mechanisms by which abiotic conditions in nests 
influence the developmental biology of reptilian 
embryos. Mechanisms of developmental plasticity have 
remained poorly explored, largely because of logistical 
constraints. Until recently, technological difficulties 
precluded extensive studies on how embryos respond to 
environmental changes. Recent methodological advances 
in non-invasive heart rate monitoring have provided an 
opportunity to explore these proximate mechanisms. 
Studies using this new technology have indicated that 
lizard embryos may adopt different developmental 
pathways to achieve similar adaptive endpoints (Du et al., 
2010b). More researches using different systems 
worldwide (including China) obviously are needed, at the 
molecular level as well as at the whole-organism level. 
Such studies, equipped with the theory and technology 
of ecological genomics, would considerably expand our 
understanding of this topic.

3.3 Correlation between phenotypes and fitness  
Understanding the links between a hatchling’s phenotype 
and its fitness is key to understanding the role of 
developmental plasticity in adaptation. Many studies have 
demonstrated that environmental conditions experienced 
by embryos can induce significant phenotypic variations 
in hatchling traits (e.g., body size and locomotor 
performance) that are plausibly related to offspring 
fitness, but these studies have rarely gone on further to 
actually demonstrate any such relationship (Warner and 
Andrews, 2002). Long-term fieldwork to address the 
effects of developmental plasticity – and on the ways that 
reproducing females manipulate the incubation conditions 
experienced by their embryos – on offspring fitness is a 
high priority. 
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