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Gonadal activity and plasma steroid hormone (testosterone and 17b-estradiol) levels in males and
females of a viviparous skink (Eutropis multifasciata) were investigated. Changes in the hormone profiles
were then correlated to changes in environmental factors such as temperature and rainfall and were
found to vary seasonally in both sexes. Gonadal activity, calculated using testicular mass and volume,
seminiferous tubule diameter and epithelial height in males and, in females, ovary mass and largest fol-
licular volume also varied seasonally. Peak spermiogenesis was in synchrony with maximal vitellogenic
activity, but reproductive synchronicity among females was low. Ovary mass and largest follicular vol-
umes were negatively related to air temperature and rainfall. Testicular mass and volume were not
related to air temperature, but both were negatively related to rainfall. Rainfall explained a greater pro-
portion of variation in vitellogenic activity than temperature. As for the climatic correlates of seasonal
variation in plasma steroid hormones, we found only in males that the plasma level of testosterone
was negatively related to rainfall. Taken together, our data show that male and female reproductive activ-
ities are more tightly correlated with rainfall than temperature in E. multifasciata.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Seasonal timing and other characteristics of the reproductive
cycles are linked to exogenous (environmental) and endogenous
(mainly hormonal) factors for a wide range of vertebrate taxa
[9,6,8,46,38]. Studies of reptile reproduction have mostly been ana-
tomical and limited to the examination of reproductive organs for
evidence of spermatogenesis and vitellogenesis [46]. These studies
generally show that temperature and rainfall influence reproduc-
tive cycles in reptiles, and that species and populations may not
necessarily respond to environmental factors in the same way.
For example, for many temperate reptiles, lower temperatures
associated with autumn and winter limit activity and physiological
processes and, consequently, they reproduce in spring and sum-
mer, with male and female cycles well synchronized [13,14,23].
Reproductive activity in tropical reptiles is also correlated with
environmental factors. However, in contrast to temperate zones,
annual climatic variation is low in the tropics and, correspondingly,
tropical reptiles are either seasonal breeders, dependent on rainfall
and food availability, or aseasonal breeders, reproducing through-
out the year [13,14,23,10]. Hormonally regulated reproduction has
been documented in several lizards where seasonal gonadal
ll rights reserved.
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recrudescence and elevation in plasma sex steroids are correlated
[2,3,11,27,48,34], but how changes in hormone levels are associ-
ated with environmental factors remains a sparsely studied area.

The pantropical scincid genus Mabuya was recently split into
four genera, and only the American forms retain that generic des-
ignation [28]. The other three genera are Chioninia endemic to Cape
Verde Islands, Euprepis in Africa, and Eutropis in Asia [28]. Although
more than 100 species of ‘‘Mabuya’’ skinks have been described
worldwide, male and/or female reproductive cycles have been de-
scribed in detail for six species only [33,15,50–52,37]. Males and
females are seasonally reproductive in Euprepis capensis [15],
Mabuya bistriata [51], Mabuya frenata [52] and Mabuya heathi
[50], but are continuously reproductive in Mabuya mabouya [37].
In two subspecies of Euprepis striata, females of the low altitude
subspecies (E. s. striata) are reproductive throughout the year apart
from a brief period at the start of the rainy season, whereas females
of the high altitude subspecies (E. s. punctatissima) are seasonally
reproductive and give birth in the late dry season only [33]. Previ-
ous studies of ‘‘Mabuya’’ skinks generally show that environmental
factors such as temperature and moisture influence reproductive
activity in both sexes.

The many-lined sun skink (Eutropis multifasciata) is one of four
‘‘Mabuya’’ species in China, occurring in five subtropical provinces
of the country [21]. This species is an ideal model to explore the
proximate and ultimate causes of variation in reptile reproductive
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Fig. 2. A cross-section of seminiferous tubules. STD: seminiferous tubule diameter;
EH: epithelial height; Scale bar = 100 lm.
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patterns because of its tropical–suptropical distribution and the
fact that the flow of herpetological research out of China remains
small. This study focuses on climatic correlates of the reproductive
cycles and plasma steroid hormone (testosterone and 17b-estra-
diol) levels in both males and females of a subtropical population
of E. multifasciata. We first document annual changes in gonadal
activities and plasma steroid hormone levels in males and females,
and then investigate whether these changes are associated with
environmental factors such as temperature and rainfall.

2. Materials and methods

2.1. Study area and climate

The study population is located between Lingshui (18�480N,
110�020E) and Ledong (18�730N, 109�170E), Hainan. Data from
Hainan Meteorological Administration show that the climate of
the study area is seasonal. Mean annual temperature is 26 �C and
total annual rainfall is 1475 mm. Monthly mean temperatures in
the warm season (April to October) are higher than the cool season
(November to February) by an average of 4 �C. Rainfall is 1010 mm
in the wet season (July to October, monthly mean rainfall
>210 mm) and 310 mm in the dry season (November to April,
monthly mean rainfall <70 mm). From September to October,
rainfall is at its highest (�290 mm) and at its lowest (�5 mm) in
January–February (Fig. 1).

2.2. Annual changes in gonadal activities and plasma steroid hormone
levels

A total of 199 females (>96 mm SVL) and 188 males (>99 mm
SVL) were collected in 2008 to study the reproductive cycles. The
smallest reproductive female of E. multifasciata is 90 mm SVL,
and adult males are larger than adult females by an average of
4 mm SVL [25]. Thus, all individuals collected were adults. Be-
tween 14 and 26 adults of each sex were sampled each month.
These individuals were decapitated to collect blood samples into
heparinised tubes. Blood samples were immediately centrifuged
at 4000 rpm for 20 min to separate plasma which was stored at
�80 �C until analysis. The bodies were dissected for gonadal anal-
yses. The following measurements were taken for each individual:
SVL, gonadal mass, length and width of left and right testes in
males, and length and width of the largest ovarian follicle in
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Fig. 1. Means (±SE) monthly air temperature (solid dots) and rainfall (solid bars)
over the 6-year period (January 2006 through December 2011) in the study area.
Data were obtained from Hainan Meteorological Administration.
females. The number of vitellogenic and nonvitellogenic follicles,
and/or embryos in each oviduct was also noted. We calculated tes-
ticular and follicular volumes with the formula for the volume of
an ellipsoid: V = 4/3 pab2, where a = 1/2 the longest diameter and
b = 1/2 the shortest diameter. Testicular and follicular volumes
were used as indicators of reproductive activity of both sexes [52].

Testes were preserved in Bouin fixer solution for 24 h, and
dehydrated using 75% ethanol solution. Tissue segments were infil-
trated with and embedded in paraffin wax, and 3 lm sections were
cut from each block with an ultramicrotome (LKB Produkter AB,
Sweden). Slides were stained with haematoxylin and eosin and
examined by light microscopy. Cross-sections of testes were taken
serially and inspected histologically to assess male gonadal activity
using a light microscope (Nikon E600, Japan). We randomly in-
spected ten cross-sections of seminiferous tubules for each testis
(Fig. 2), and measured seminiferous tubule diameter and epithelial
height using Image-Pro Plus 6.0 (Media Cybernetics, Bethesda,
USA) to obtain mean values for the two variables.

Concentrations of two plasma steroid hormones, testosterone
(T) and 17b-estradiol (E2), were determined by enzyme-linked
immunosorbent assay via EIA kits (T product No. 582701, and E2
product No. 582251; Cayman Chemical Inc). The interassay coeffi-
cient of variation was 6.6% for T and 12.3% for E2, and the intrassay
coefficient of variation was 7.5% for T and 5.5% for E2. Before the
EIA assay, steroids were extracted with 5 � the sample volume of
diethyl ether for three times and dried under a nitrogen stream
in a dry bath at 30 �C. Recovery rates averaged 71.8% for T and
85.3% for E2.
2.3. Statistical analyses

Statistica 6.0 (StatSoft, Tulsa, USA) was used to analyze data.
Data were tested for normality using Kolmogorov–Smirnov test,
and for homogeneity of variances using Bartlett’s test. Loge trans-
formations were performed when necessary to satisfy the assump-
tions for parametric tests. Linear regression analysis was used to
examine whether a trait was dependent on body size, and whether
reproductive activity of both sexes was dependent on environ-
mental factors (air temperature and precipitation). Spearman cor-
relation analysis was done to examine whether there was a
correlation between the plasma level of a given steroid hormone
and gonadal activity in each sex. To describe male and female
reproductive cycles, we firstly tested the relationship between
the loge-transformed gonadal size (mass and volume) and the
loge-transformed body size (SVL). Body size influenced gonadal
size in males but not in females. We therefore calculated residuals
of loge-transformed gonadal size against loge-transformed SVL in
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males. The female reproductive cycle was best represented by ac-
tual gonadal data. One-way analysis of variance (ANOVA) with
month as the factor was used to examine whether gonadal size
and plasma steroid hormones examined varied seasonally. Multi-
ple comparisons were performed when necessary using Tukey’s
post hoc test. Values were presented as mean ± SE, and the signif-
icance level was set at a = 0.05.
3. Results

3.1. Female reproductive cycle

Females sampled in October and November did not have vitel-
logenic follicles and embryos; females with vitellogenic follicles
were observed in January to July; females with newly ovulated
eggs were observed in March to July; females with visible embryos
were observed in February to September, and in December (Fig. 3).
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Fig. 4. Monthly changes in ovary mass (A) and largest follicular volume (B). Data are exp
letters differ significantly (Tukey’s post hoc test, a = 0.05).
There was no relationship between loge-ovary mass and loge-SVL
(r2 = 0.004, F1, 197 = 0.84, p = 0.362), nor was the relationship be-
tween loge-largest follicular volume and loge-SVL (r2 = 0.004, F1,

197 = 0.83, p = 0.363). Ovary mass varied among months through-
out the year (ANOVAs on loge transformed data; F11, 187 = 8.28,
P < 0.0001; Fig. 4A), so did the largest follicular volume (ANOVA
on loge transformed data; F11, 187 = 8.42, P < 0.0001; Fig. 4B).
Ovaries began to increase in size in July and reached maximum size
in January.
3.2. Male reproductive cycle

The regression of loge-testis mass against loge-SVL was signifi-
cant (r2 = 0.18, F1, 186 = 40.23, P < 0.0001), so was the regression of
loge-testicular volume against loge-SVL (r2 = 0.27, F1, 186 = 69.22,
p < 0.0001). Testis mass varied significantly among months
throughout the year (ANOVAs on regression residuals; F11,

176 = 16.50, p < 0.0001; Fig. 5A), so did the testicular volume (ANO-
VAs on regression residuals; F11, 176 = 10.45, p < 0.0001; Fig. 5B).
Testes began to increase in size in August, remained enlarged in
November–May, after which they decreased in size. Monthly
changes in seminiferous tubule diameter (ANOVA on loge trans-
formed data; F11, 176 = 9.47, p < 0.0001; Fig. 6A) and epithelial
height (ANOVA on loge transformed data; F11, 176 = 8.40, p <
0.0001; Fig. 6B) were significant. Seminiferous tubule diameter
and epithelial height were positively related to testicular mass
and volume (r2 > 0.39 and p < 0.03 in all cases; Fig. 7).
3.3. Annual variation in plasma steroid hormones

Plasma T and E2 levels varied monthly in both sexes (ANOVAs
on loge transformed data; p < 0.0001 in all cases) (Fig. 8). The
annual mean T level was higher in males than in females
(F1, 186 = 921.46, p < 0.0001), so was the annual mean E2 level
(F1, 197 = 23.54, p < 0.0001). Plasma T and E2 levels were not
correlated with ovary mass or largest follicular volume (Spearman
correlation analysis; all r < 0.27 and all p > 0.191). Plasma T levels
were positively correlated with testis mass (r = 0.72, p < 0.008)
and testicular volume (r = 0.66, p = 0.020). Plasma E2 levels were
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Fig. 5. Monthly changes in testicular mass (A) and volume (B). Data are mean (±SE) residuals from regressions of loge-testicular mass (mg) and volume (mm3) against
loge-SVL (mm). Numbers in the figure indicate sample size for each month. Means with different letters differ significantly (Tukey’s post hoc test, a = 0.05).
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Fig. 6. Monthly changes in seminiferous tubule diameter (A) and epithelial height (B). Data are expressed as mean ± SE. See Fig. 5 for sample size for each month. Means with
different letters differ significantly (Tukey’s post hoc test, a = 0.05).
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not correlated with testis mass (r = 0.18, p = 0.587) or testicular
volume (r = 0.30, p = 0.342).
3.4. Climatic correlates

Ovary mass and largest follicular volumes were negatively re-
lated to air temperature and rainfall (linear regression analysis;
p < 0.03 in all cases; Fig. 9). Testicular mass and volume were not
related to air temperature (linear regression analysis; p > 0.091 in
both cases), but both were negatively related to rainfall (linear
regression analysis; p < 0.022 in both cases; Fig. 10). As for the cli-
matic correlates of seasonal variation in plasma steroid hormones,
we found only in males that the T level was negatively related to
rainfall (F1, 10 = 23.93, p < 0.001; Fig. 11).
4. Discussion

4.1. Female and male reproductive cycle

Female E. multifasciata with visible embryos were observed in
February to September and in December (Fig. 3). This pattern is
similar to that reported for tropical lizards, for example for Anolis
opalinus [24], Japalura swinhonis [22], M. heathi [51], M. mabouya
[37] and E. s. striata [33] where reproductive synchronicity among
females is low. Females with newly ovulated eggs were observed in
March to July (Fig. 3). This observation together with the findings
that embryonic development in wild sampled individuals often
take about two months to complete and most females give birth
between March–August [25,44] suggest that female E. multifasciata
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have the potential to produce two litters per year. Among the
‘‘Mabuya’’ species, only E. striata [42,33] and M. mabouya [37] have
been reported to be multi-clutched.

There has been evidence that in lizards seminiferous tubule
diameter and epithelial height become enlarged in the season
when testes are spermatogenically active [17,39]. Our finding that
seminiferous tubule diameter and epithelial height were positively
related to testicular mass and volume adds evidence that sper-
matogenic activity can be better estimated by the size of testes
in lizards [42,12,51,36,37,25,22]. Testicular mass and volume, sem-
iniferous tubule diameter, epithelial height, ovary mass and largest
follicular volume varied seasonally, and this indicates that, as in
other ‘‘Mabuya’’ lizards such as E. capensis [15], E. s. punctatissima
[33], M. bistriata [51], M. frenata [52] and M. heathi [50], males
and females of E. multifasciata are seasonally reproductive. It is
not surprising that the aforementioned species are seasonally
reproductive because they inhabit seasonal tropical zones. Inter-
estingly, however, E. s. striata [33] and M. mabouya [37] also inhabit
seasonal tropical zones but are either continuously reproductive
(M. mabouya) or reproductive throughout most of the year (E. s.
striata). Why is reproductive seasonality evident in some seasonal
tropical lizards but not in others? The answer presumably is that
the rainfall regime and temperature may affect reproductive activ-
ity in tropical lizards. For example, the local rainfall regime is bi-
modal for M. mabouya [37], but is monomodal for E. capensis
[15], E. striata [33], E. multifasciata (Fig. 1) and M. frenata [52].
Reproductive seasonality is evident in E. s. punctatissima but not
in E. s. striata, although the two subspecies both inhabit regions
with a monomodal rainfall regime [33]. It is noteworthy that E. s.
striata uses warmer habitats than E. s. punctatissima [33]. That
reproduction is constrained by relatively lower temperature in E.
s. punctatissima provides evidence that temperature may influence
reproductive activity in tropical lizards.

4.2. Climatic correlates of reproduction

Temperature is the most important environmental factor con-
trolling and regulating reproductive cycles of temperate and
cold-climate reptiles, either by direct action, or due to the exis-
tence of a temperature threshold to facilitate a photoperiod
response [12,37,32,20]. In tropical zones seasonal variation is
greater for rainfall than temperature. This is also the case for
Hainan Island (Fig. 1), and so we hypothesize that seasonality in
rainfall would play a more important role than temperature in
influencing reproductive activity in E. multifasciata. This hypothesis
was supported because (1) the relationship between testicular size
and rainfall was significant, whereas the relationship between tes-
ticular size and temperature was not, and (2) rainfall explained a
greater proportion of variation in vitellogenic activity (as esti-
mated by ovary mass and largest follicular volume) than tempera-
ture. These results suggest that vitellogenic and spermatogenic
activities are more tightly correlated with rainfall than tempera-
ture in E. multifasciata. Spermatogenic and vitellogenic activities
are lower in the wet season in E. multifasciata, as revealed by the
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fact that testicular mass and volume, ovary mass and largest follic-
ular volume were negatively correlated with rainfall. Peak sper-
miogenesis overall was in synchrony with maximal vitellogenic
activity, suggesting the existence of a prenuptial spermatogenic
cycle in male E. multifasciata.

Female E. multifasciata never give birth in the driest (January–
February) and wettest (September–October) seasons [44]. Thus, it
is possible that some degree of synchronization of the reproductive
activity exists in female E. multifasciata and is related to rainfall,
such that most neonates are found in months (April–August) with
moderate rainfall. The finding that parturition date begins at the
end of the driest season through the onset of the wettest season
is consistent with results for other ‘‘Mabuya’’ lizards, for example
for E. capensis [15], E. striata [42,33], M. frenata [52] and M. mabouya
[37]. This consistency suggests that availability of moisture is an
important factor affecting reproduction due to the effect of rainfall
on food availability for newly emerging young. In turn, optimal
time of birth can correlate with synchronization of reproductive
activity in lizards [33,37,35,29,32].

4.3. Hormonal regulation of reproduction

Estrogens such as 17b-estradiol (E2) stimulate reproductive
behavior and vitellogenesis in female reptiles, and are expected
to be elevated during these events [19,7,4]. Androgens such as tes-
tosterone (T) stimulate reproductive behavior and spermatogene-
sis in male reptiles, and are expected to be elevated during
periods of spermatogenesis and mating [31,47,41,16]. The role of
androgens in female reproduction is thought to include sensitiza-
tion of the follicles to preovulatory gonadotropin stimulation,
influencing courtship and mating behavior, stimulation of oviduc-
tal hypertrophy, and the mobilization of lipids, carbohydrates and
proteins for vitellogenesis [26,54,18,43,53]. Different species vary
in the relative concentration of T and E2 and the exact relationship
of these hormones to follicular development and mating activity.
Here, plasma levels of T and E2 varied seasonally in both sexes,
suggesting that in E. multifasciata, as in other reptiles [18,40], T
and E2 may have physiological roles in influencing male and fe-
male reproductive cycles. However, plasma T levels were low in fe-
males and did not rise alongside vitellogenic activity, but were
high in males and exhibited an elevation with spermatogenetic
activity. These results suggest that the role of testosterone in reg-
ulating reproduction is less important in females compared to
males. A correlation between the annual cycle of testicular activity
and plasma T levels has been also observed in other warm- and
cold-climate lizards, for example in Cordylus giganteus [49], Niveo-
scincus metallicus [45], Pogona barbata [1], Sceloporus jarrovi [30]
and Tiliqua rugosa [5]. Plasma E2 levels are correlated with vitello-
genic activity in lizards where reproductive synchronicity among
females is high [2,3,11,27,48,34]. Such a correlation was not found
in this study, presumably because reproductive synchronicity
among female E. multifasciata is low. Plasma T levels were corre-
lated with spermatogenetic activity, whereas plasma E2 levels
were not. These results suggest that T rather than E2 is involved
in the regulation of male reproduction in E. multifasciata. We found
only in males that the gonadal size (mass and volume) and T level
were negatively correlated with rainfall. These findings reinforce
our conclusion that the male reproductive cycle is more tightly
correlated with rainfall than temperature in E. multifasciata.

4.4. Conclusions

Our data show that gonadal activities and plasma levels of
testosterone and 17b-estradiol vary seasonally in both sexes of
E. multifasciata. Peak spermiogenesis is in synchrony with maximal
vitellogenic activity, but reproductive synchronicity among
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females is low. Annual changes in gonadal activities are associated
with rainfall in both sexes, and are associated with temperature
only in females. As for the climatic correlates of seasonal variation
in plasma steroid hormones, we can find only in males that the
plasma level of testosterone is negatively correlated with rainfall.
Taken together, our data show that male and female reproductive
activities are more tightly correlated with rainfall than tempera-
ture in E. multifasciata.
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